Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 156
1.
J Neuroinflammation ; 21(1): 121, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720368

BACKGROUND: Umbilical cord blood (UCB) cells are a promising treatment for preterm brain injury. Access to allogeneic sources of UCB cells offer the potential for early administration to optimise their therapeutic capacities. As preterm infants often require ventilatory support, which can contribute to preterm brain injury, we investigated the efficacy of early UCB cell administration following ventilation to reduce white matter inflammation and injury. METHODS: Preterm fetal sheep (0.85 gestation) were randomly allocated to no ventilation (SHAM; n = 5) or 15 min ex utero high tidal volume ventilation. One hour following ventilation, fetuses were randomly allocated to i.v. administration of saline (VENT; n = 7) or allogeneic term-derived UCB cells (24.5 ± 5.0 million cells/kg; VENT + UCB; n = 7). Twenty-four hours after ventilation, lambs were delivered for magnetic resonance imaging and post-mortem brain tissue collected. Arterial plasma was collected throughout the experiment for cytokine analyses. To further investigate the results from the in vivo study, mononuclear cells (MNCs) isolated from human UCB were subjected to in vitro cytokine-spiked culture medium (TNFα and/or IFNγ; 10 ng/mL; n = 3/group) for 16 h then supernatant and cells collected for protein and mRNA assessments respectively. RESULTS: In VENT + UCB lambs, systemic IFNγ levels increased and by 24 h, there was white matter neuroglial activation, vascular damage, reduced oligodendrocytes, and increased average, radial and mean diffusivity compared to VENT and SHAM. No evidence of white matter inflammation or injury was present in VENT lambs, except for mRNA downregulation of OCLN and CLDN1 compared to SHAM. In vitro, MNCs subjected to TNFα and/or IFNγ displayed both pro- and anti-inflammatory characteristics indicated by changes in cytokine (IL-18 & IL-10) and growth factor (BDNF & VEGF) gene and protein expression compared to controls. CONCLUSIONS: UCB cells administered early after brief high tidal volume ventilation in preterm fetal sheep causes white matter injury, and the mechanisms underlying these changes are likely dysregulated responses of the UCB cells to the degree of injury/inflammation already present. If immunomodulatory therapies such as UCB cells are to become a therapeutic strategy for preterm brain injury, especially after ventilation, our study suggests that the inflammatory state of the preterm infant should be considered when timing UCB cells administration.


Tidal Volume , Animals , Sheep , Female , Humans , Tidal Volume/physiology , Fetal Blood/cytology , Pregnancy , Cytokines/metabolism , Cord Blood Stem Cell Transplantation/methods , Respiration, Artificial/methods , Respiration, Artificial/adverse effects , Animals, Newborn
2.
JAMA Netw Open ; 7(5): e2413550, 2024 May 01.
Article En | MEDLINE | ID: mdl-38709738

Importance: Studies suggest that early neurodevelopmental assessments are beneficial for identifying cerebral palsy, yet their effectiveness in practical scenarios and their ability to detect cognitive impairment are limited. Objective: To assess the effectiveness of early neurodevelopmental assessments in identifying cerebral palsy and cognitive and other neurodevelopmental impairments, including their severity, within a multidisciplinary clinic. Design, Setting, and Participants: This diagnostic study was conducted at Monash Children's Hospital, Melbourne, Australia. Participants were extremely preterm infants born at less than 28 weeks' gestation or extremely low birth weight infants less than 1000 g and term encephalopathic infants who received therapeutic hypothermia, attending the early neurodevelopmental clinic between January 2019 and July 2021. Data were analyzed from December 2023 to January 2024. Exposures: Early cerebral palsy or high risk of cerebral palsy, the absence of fidgety movements, and Hammersmith Infant Neurological Examination (HINE) scores at corrected age (CA) 3 to 4 months. Early cerebral palsy or high risk of cerebral palsy diagnosis was based on absent fidgety movements, a low HINE score (<57), and medical neurological examination. Main Outcome and Measures: The outcomes of interest were cerebral palsy, cognitive and neurodevelopmental impairments and their severity, diagnosed at 24 to 36 months' CA. Results: A total of 116 infants (median [IQR] gestational age, 27 [25-29] weeks; 65 [56%] male) were included. Diagnosis of early cerebral palsy or high risk of cerebral palsy demonstrated a sensitivity of 92% (95% CI, 63%-99%) and specificity of 84% (95% CI, 76%-90%) for predicting cerebral palsy and 100% (95% CI, 59%-100%) sensitivity and 80% (95% CI, 72%-87%) specificity for predicting moderate to severe cerebral palsy. Additionally, the accuracy of diagnosis of early cerebral palsy or high risk of cerebral palsy was 85% (95% CI, 77%-91%) for predicting cerebral palsy and 81% (95% CI, 73%-88%) for predicting moderate to severe cerebral palsy. Similarly, the absence of fidgety movements had an 81% (95% CI, 73%-88%) accuracy in predicting cerebral palsy, and HINE scores exhibited good discriminatory power with an area under the curve of 0.88 (95% CI, 0.79-0.97) for cerebral palsy prediction. However, for cognitive impairment, the predictive accuracy was 44% (95% CI, 35%-54%) for an early cerebral palsy or high risk of cerebral palsy diagnosis and 45% (95% CI, 36%-55%) for the absence of fidgety movements. Similarly, HINE scores showed poor discriminatory power for predicting cognitive impairment, with an area under the curve of 0.62 (95% CI, 0.51-0.73). Conclusions and Relevance: In this diagnostic study of infants at high risk for cerebral palsy or other cognitive or neurodevelopmental impairment, early neurodevelopmental assessments at 3 to 4 months' CA reliably predicted cerebral palsy and its severity at 24 to 36 months' CA, signifying its crucial role in facilitating early intervention. However, for cognitive impairment, longer-term assessments are necessary for accurate identification.


Cerebral Palsy , Humans , Cerebral Palsy/epidemiology , Cerebral Palsy/diagnosis , Female , Male , Infant, Newborn , Infant , Neurologic Examination/methods , Infant, Extremely Premature , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/etiology , Child, Preschool , Australia/epidemiology
3.
Cells ; 13(8)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38667275

Blood-brain barrier (BBB) dysfunction and neuroinflammation are key mechanisms of brain injury. We performed a time-course study following neonatal hypoxia-ischemia (HI) to characterize these events. HI brain injury was induced in postnatal day 10 rats by single carotid artery ligation followed by hypoxia (8% oxygen, 90 min). At 6, 12, 24, and 72 h (h) post-HI, brains were collected to assess neuropathology and BBB dysfunction. A significant breakdown of the BBB was observed in the HI injury group compared to the sham group from 6 h in the cortex and hippocampus (p < 0.001), including a significant increase in albumin extravasation (p < 0.0033) and decrease in basal lamina integrity and tight-junction proteins. There was a decrease in resting microglia (p < 0.0001) transitioning to an intermediate state from as early as 6 h post-HI, with the intermediate microglia peaking at 12 h (p < 0.0001), which significantly correlated to the peak of microbleeds. Neonatal HI insult leads to significant brain injury over the first 72 h that is mediated by BBB disruption within 6 h and a transitioning state of the resident microglia. Key BBB events coincide with the appearance of the intermediate microglial state and this relationship warrants further research and may be a key target for therapeutic intervention.


Animals, Newborn , Blood-Brain Barrier , Hypoxia-Ischemia, Brain , Microglia , Animals , Microglia/pathology , Microglia/metabolism , Blood-Brain Barrier/pathology , Blood-Brain Barrier/metabolism , Hypoxia-Ischemia, Brain/pathology , Hypoxia-Ischemia, Brain/metabolism , Rats , Rats, Sprague-Dawley , Time Factors , Male , Female
4.
Pediatr Res ; 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38519795

The hippocampus is a vital brain structure deep in the medial temporal lobe that mediates a range of functions encompassing emotional regulation, learning, memory, and cognition. Hippocampal development is exquisitely sensitive to perturbations and adverse conditions during pregnancy and at birth, including preterm birth, fetal growth restriction (FGR), acute hypoxic-ischaemic encephalopathy (HIE), and intrauterine inflammation. Disruptions to hippocampal development due to these conditions can have long-lasting functional impacts. Here, we discuss a range of preclinical models of prematurity and FGR and conditions that induce hypoxia and inflammation, which have been critical in elucidating the underlying mechanisms and cellular and subcellular structures implicated in hippocampal dysfunction. Finally, we discuss potential therapeutic targets to reduce the burden of these perinatal insults on the developing hippocampus. IMPACT: The review explores the preclinical literature examining the association between pregnancy and birth complications, and hippocampal form and function. The developmental processes and cellular mechanisms that are disrupted within the hippocampus following perinatal compromise are described, and potential therapeutic targets are discussed.

5.
Pediatr Res ; 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38519794

The hippocampus is a neuron-rich specialised brain structure that plays a central role in the regulation of emotions, learning and memory, cognition, spatial navigation, and motivational processes. In human fetal development, hippocampal neurogenesis is principally complete by mid-gestation, with subsequent maturation comprising dendritogenesis and synaptogenesis in the third trimester of pregnancy and infancy. Dendritogenesis and synaptogenesis underpin connectivity. Hippocampal development is exquisitely sensitive to perturbations during pregnancy and at birth. Clinical investigations demonstrate that preterm birth, fetal growth restriction (FGR), and acute hypoxic-ischaemic encephalopathy (HIE) are common perinatal complications that alter hippocampal development. In turn, deficits in hippocampal development and structure mediate a range of neurodevelopmental disorders, including cognitive and learning problems, autism, and Attention-Deficit/Hyperactivity Disorder (ADHD). In this review, we summarise the developmental profile of the hippocampus during fetal and neonatal life and examine the hippocampal deficits observed following common human pregnancy complications. IMPACT: The review provides a comprehensive summary of the developmental profile of the hippocampus in normal fetal and neonatal life. We address a significant knowledge gap in paediatric research by providing a comprehensive summary of the relationship between pregnancy complications and subsequent hippocampal damage, shedding new light on this critical aspect of early neurodevelopment.

6.
Front Endocrinol (Lausanne) ; 15: 1374897, 2024.
Article En | MEDLINE | ID: mdl-38544688

Introduction: Fetal growth restriction (FGR) is a common pregnancy complication, caused by placental insufficiency, with serious adverse consequences for development in utero and postnatal wellbeing. There are no antenatal treatments to improve growth or organ development in FGR, and animal models are essential to mimic the physiological adaptations in FGR and to assess potential interventions. This study aimed to identify the temporal nature of reduced developmental trajectory in fetuses with FGR, and to examine the effects of common factors that may mediate differential growth such as glucocorticoid treatment. We hypothesised that the trajectory of growth would be adversely impacted by FGR. Methods: FGR was induced via surgical placental insufficiency in fetal sheep (89 days gestation/0.6 gestation; n=135) and compared to age-matched controls over the last third of gestation and into neonatal life (n=153). Results: Body weight of FGR fetuses/lambs was significantly reduced compared to controls (p<0.0001) from 127 days of gestation (term is 148 days), with increased brain:body weight ratio (p<0.0001) indicative of brain sparing. All biometric measures of body size were reduced in the FGR group with the exception of biparietal (head) diameter. The trajectory of body growth in the last trimester of sheep pregnancy was significantly reduced in the FGR group compared to controls, and stillbirth rate increased with longer gestation. Discussion: This work provides a well characterised FGR animal model that mimics the known physiological adaptations in human pregnancy and can be used to determine the efficacy of potential interventions.


Fetal Growth Retardation , Placental Insufficiency , Sheep , Animals , Female , Pregnancy , Humans , Fetal Growth Retardation/etiology , Placenta , Phenotype , Body Weight
7.
Pediatr Res ; 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38225450

BACKGROUND: Early-onset fetal growth restriction (FGR) is associated with adverse outcomes. We hypothesised that maternal melatonin administration will improve fetal brain structure in FGR. METHODS: Surgery was performed on twin-bearing ewes at 88 days (0.6 gestation), and FGR induced in one twin via single umbilical artery ligation. Melatonin was administered intravenously (6 mg/day) to a group of ewes commencing on day of surgery until 127 days (0.85 gestation), when the ewe/fetuses were euthanized, and fetal brains collected. RESULTS: Study groups were control (n = 5), FGR (n = 5), control+melatonin (control+MLT; n = 6) and FGR+melatonin (FGR + MLT; n = 6). Melatonin administration did not significantly alter fetal body or brain weights. Myelin (CNPase+) fibre density was reduced in FGR vs. control animals in most brain regions examined (p < 0.05) and melatonin treatment restored CNPase fibre density. Similar but less pronounced effect was seen with mature myelin (MBP+) staining. Significant differences in activated microglia (Iba-1) activity were seen between lamb groups (MLT mitigated FGR effect) in periventricular white matter, subventricular zone and external capsule (p < 0.05). Similar effects were seen in astrogliosis (GFAP) in intragyral white matter and cortex. CONCLUSIONS: Maternal melatonin administration in early onset FGR led to improved myelination of white matter brain regions, possibly mediated by decreased inflammation. IMPACT: Maternal melatonin administration might lead to neuroprotection in the growth-restricted fetus, possibly via dampening neuroinflammation and enhancing myelination. This preclinical study adds to the body of work on this topic, and informs clinical translation. Neuroprotection likely to improve long-term outcomes of this vulnerable infant group.

8.
Pediatr Res ; 95(1): 59-69, 2024 Jan.
Article En | MEDLINE | ID: mdl-37674023

The neurovascular unit (NVU) within the brain is a multicellular unit that synergistically acts to maintain blood-brain barrier function and meet cerebral metabolic demand. Recent studies have indicated disruption to the NVU is associated with neuropathology in the perinatal brain. Infants with fetal growth restriction (FGR) are known to be at increased risk of neurodevelopmental conditions including motor, learning, and behavioural deficits. There are currently no neuroprotective treatments for these conditions. In this review, we analyse large animal studies examining the effects of FGR on the perinatal NVU. These studies show altered vascularity in the FGR brain as well as blood-brain barrier dysfunction due to underlying cellular changes, mediated by neuroinflammation. Neuroinflammation is a key mechanism associated with pathological effects in the FGR brain. Hence, targeting inflammation may be key to preserving the multicellular NVU and providing neuroprotection in FGR. A number of maternal and postnatal therapies with anti-inflammatory components have been investigated in FGR animal models examining targets for amelioration of NVU disruption. Each therapy showed promise by uniquely ameliorating the adverse effects of FGR on multiple aspects of the NVU. The successful implementation of a clinically viable neuroprotective treatment has the potential to improve outcomes for neonates affected by FGR. IMPACT: Disruption to the neurovascular unit is associated with neuropathology in fetal growth restriction. Inflammation is a key mechanism associated with neurovascular unit disruption in the growth-restricted brain. Anti-inflammatory treatments ameliorate adverse effects on the neurovascular unit and may provide neuroprotection.


Fetal Growth Retardation , Neuroinflammatory Diseases , Pregnancy , Animals , Infant, Newborn , Infant , Female , Humans , Brain/metabolism , Blood-Brain Barrier , Anti-Inflammatory Agents/therapeutic use
9.
Cells ; 12(22)2023 11 20.
Article En | MEDLINE | ID: mdl-37998394

(1) Background: Neonatal brain injury can lead to permanent neurodevelopmental impairments. Notably, suppressing inflammatory pathways may reduce damage. To determine the role of neuroinflammation in the progression of neonatal brain injury, we investigated the effect of treating neonatal rat pups with the immunosuppressant tacrolimus at two time points: before and after hypoxic-ischaemic (HI)-induced injury. (2) Methods: To induce HI injury, postnatal day (PND) 10 rat pups underwent single carotid artery ligation followed by hypoxia (8% oxygen, 90 min). Pups received daily tacrolimus (or a vehicle) starting either 3 days before HI on PND 7 (pre-HI), or 12 h after HI (post-HI). Four doses were tested: 0.025, 0.05, 0.1 or 0.25 mg/kg/day. Pups were euthanised at PND 17 or PND 50. (3) Results: All tacrolimus doses administered pre-HI significantly reduced brain infarct size and neuronal loss, increased the number of resting microglia and reduced cellular apoptosis (p < 0.05 compared to control). In contrast, only the highest dose of tacrolimus administered post-HI (0.25 mg/kg/day) reduced brain infarct size (p < 0.05). All doses of tacrolimus reduced pup weight compared to the controls. (4) Conclusions: Tacrolimus administration 3 days pre-HI was neuroprotective, likely mediated through neuroinflammatory and cell death pathways. Tacrolimus post-HI may have limited capacity to reduce brain injury, with higher doses increasing rat pup mortality. This work highlights the benefits of targeting neuroinflammation during the acute injurious period. More specific targeting of neuroinflammation, e.g., via T-cells, warrants further investigation.


Brain Injuries , Hypoxia-Ischemia, Brain , Animals , Rats , Animals, Newborn , Tacrolimus/pharmacology , Tacrolimus/therapeutic use , Neuroinflammatory Diseases , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/metabolism , Hypoxia , Brain Infarction
10.
Am J Physiol Heart Circ Physiol ; 325(6): H1266-H1278, 2023 12 01.
Article En | MEDLINE | ID: mdl-37773057

Fetal growth restriction (FGR) increases the risk cardiovascular disease (CVD) in adulthood. Placental insufficiency and subsequent chronic fetal hypoxemia are causal factors for FGR, leading to a redistribution of blood flow that prioritizes vital organs. Subclinical signs of cardiovascular dysfunction are evident in growth-restricted neonates; however, the mechanisms programming for CVD in adulthood remain unknown. This study aimed to determine the potential mechanisms underlying structural and functional changes within the heart and essential (carotid) and nonessential (femoral) vascular beds in growth-restricted lambs. Placental insufficiency was surgically induced in ewes at 89 days gestational age (dGA, term = 148dGA). Three age groups were investigated: fetal (126dGA), newborn (24 h after preterm birth), and 4-wk-old lambs. In vivo and histological assessments of cardiovascular indices were undertaken. Resistance femoral artery function was assessed via in vitro wire myography and blockade of key vasoactive pathways including nitric oxide, prostanoids, and endothelium-dependent hyperpolarization. All lambs were normotensive throughout the first 4 wk of life. Overall, the FGR cohort had more globular hearts compared with controls (P = 0.0374). A progressive decline in endothelium-dependent vasodilation was demonstrated in FGR lambs compared with controls. Further investigation revealed that impairment of the prostanoid pathway may drive this reduction in vasodilatory capacity. Clinical indicators of CVD were not observed in our FGR lambs. However, subclinical signs of cardiovascular dysfunction were present in our FGR offspring. This study provides insight into potential mechanisms, such as the prostanoid pathway, that may warrant therapeutic interventions to improve cardiovascular development in growth-restricted newborns.NEW & NOTEWORTHY Our findings provide novel insight into the potential mechanisms that program for cardiovascular dysfunction in growth-restricted neonates as our growth-restricted lambs exhibited a progressive decline in endothelium-dependent vasodilation in the femoral artery between birth and 4 wk of age. Subsequent analyses indicated that this reduction in vasodilatory capacity is likely to be mediated by the prostanoid pathway and prostanoids could be a potential target for therapeutic interventions for fetal growth restriction (FGR).


Cardiovascular Diseases , Placental Insufficiency , Premature Birth , Sheep , Animals , Pregnancy , Female , Infant, Newborn , Humans , Fetal Growth Retardation , Placenta/blood supply , Sheep, Domestic , Prostaglandins
11.
Am J Physiol Heart Circ Physiol ; 325(5): H1081-H1087, 2023 11 01.
Article En | MEDLINE | ID: mdl-37656131

Growth-restricted neonates have worse outcomes after perinatal asphyxia, with more severe metabolic acidosis than appropriately grown neonates. The cardiovascular physiology associated with fetal growth restriction (FGR) may alter their response to asphyxia. However, research on asphyxia in FGR is limited. Here we compared cardiovascular hemodynamics in preterm FGR and control lambs during mild perinatal asphyxia. We induced FGR in one twin at 89 days gestation (term 148 days), while the other served as a control. At 126 days gestation, lambs were instrumented to allow arterial blood pressure and regional blood flow recording, and then mild perinatal asphyxia was induced by umbilical cord clamping, and resuscitation followed neonatal guidelines. FGR lambs maintained carotid blood flow (CBF) for 7 min, while control lambs rapidly decreased CBF (P < 0.05). Fewer growth-restricted lambs needed chest compressions for return of spontaneous circulation (ROSC) (17 vs. 83%, P = 0.02). The extent of blood pressure overshoot after ROSC was similar, but it took longer for MAP to return to baseline in FGR lambs (18.83 ± 0.00 vs. 47.67 ± 0.00 min, P = 0.003). Growth-restricted lambs had higher CBF after ROSC (P < 0.05) and displayed CBF overshoot, unlike control lambs (P < 0.03). In conclusion, preterm growth-restricted lambs show resilience during perinatal asphyxia based on prolonged CBF maintenance and reduced need for chest compressions during resuscitation. However, CBF overshoot after ROSC may increase the risk of cerebrovascular injury in FGR.NEW & NOTEWORTHY Preterm growth-restricted lambs maintain carotid blood flow for longer than control lambs during asphyxia and have a lower requirement for chest compressions than control lambs during resuscitation. Preterm growth-restricted, but not control, lambs displayed an overshoot in carotid blood flow following return of spontaneous circulation.


Asphyxia Neonatorum , Asphyxia , Pregnancy , Female , Animals , Sheep , Asphyxia/complications , Animals, Newborn , Sheep, Domestic , Asphyxia Neonatorum/complications , Asphyxia Neonatorum/therapy , Hemodynamics/physiology
12.
J Physiol ; 601(21): 4667-4689, 2023 11.
Article En | MEDLINE | ID: mdl-37589339

Fetal growth restriction (FGR) is a complex obstetric issue describing a fetus that does not reach its genetic growth potential. The primary cause of FGR is placental dysfunction resulting in chronic fetal hypoxaemia, which in turn causes altered neurological, cardiovascular and respiratory development, some of which may be pathophysiological, particularly for neonatal life. The brainstem is the critical site of cardiovascular, respiratory and autonomic control, but there is little information describing how chronic hypoxaemia and the resulting FGR may affect brainstem neurodevelopment. This review provides an overview of the brainstem-specific consequences of acute and chronic hypoxia, and what is known in FGR. In addition, we discuss how brainstem structural alterations may impair functional control of the cardiovascular and respiratory systems. Finally, we highlight the clinical and translational findings of the potential roles of the brainstem in maintaining cardiorespiratory adaptation in the transition from fetal to neonatal life under normal conditions and in response to the pathological environment that arises during development in growth-restricted infants. This review emphasises the crucial role that the brainstem plays in mediating cardiovascular and respiratory responses during fetal and neonatal life. We assess whether chronic fetal hypoxaemia might alter structure and function of the brainstem, but this also serves to highlight knowledge gaps regarding FGR and brainstem development.


Fetal Growth Retardation , Placenta , Infant, Newborn , Pregnancy , Female , Humans , Brain Stem , Lung , Hypoxia
13.
Stem Cells Transl Med ; 12(10): 651-664, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37603845

BACKGROUND: Neonatal cell therapy applications are increasing; however, data on allogeneic cell therapy are limited. OBJECTIVE: To summarize evidence on allogeneic cell therapy in term and preterm neonates. METHODS: Cochrane Central Register of Controlled Trials, Embase, Ovid Medline, and various registries were searched for studies investigating the safety, feasibility, and efficacy of allogeneic cell therapy in neonates. Two authors independently selected the articles, extracted data, and assessed the risk of bias. RESULTS: Twelve published (153 infants) and 21 ongoing studies were included. These studies predominantly sourced allogeneic cells from umbilical cord blood (UCB). Mesenchymal stromal cells (MSCs) were the main cell type used (134 of 153 infants); others included UCB-derived total nucleated cells (TNCs) and human amnion epithelial cells (hAECs). Applications included bronchopulmonary dysplasia (BPD; 113 infants), Krabbe disease (13 infants), intraventricular haemorrhage (10 infants), perinatal arterial ischemic stroke (10 infants), hypoxic-ischaemic encephalopathy (6 infants), and necrotizing enterocolitis (1 infant). Nine out of 12 studies did not report any serious adverse events (SAEs) related to cell administration. Three studies reported SAEs, such as graft versus host disease (GVHD) in 5 infants (UCB-derived TNCs for Krabbe disease); and transient cardiorespiratory compromise in 1 infant (hAECs for BPD). Data on efficacy outcomes were limited. CONCLUSION: The safety and feasibility of allogeneic cell therapy applications in neonates are available, mainly from the use of MSCs. Further safety data for other cell types are required, and the risk of GVHD in different settings needs to be determined. Efficacy studies are largely lacking for all cell types. PROTOCOL REGISTRATION: The protocol was registered with PROSPERO (registration number CRD42023397876), the international prospective register for systematic reviews (https://www.crd.york.ac.uk/PROSPERO).

14.
J Physiol ; 2023 Aug 28.
Article En | MEDLINE | ID: mdl-37641535

Fetal growth restriction (FGR) is associated with cardiovascular and respiratory complications after birth and beyond. Despite research showing a range of neurological changes following FGR, little is known about how FGR affects the brainstem cardiorespiratory control centres. The primary neurons that release serotonin reside in the brainstem cardiorespiratory control centres and may be affected by FGR. At two time points in the last trimester of sheep brain development, 110 and 127 days of gestation (0.74 and 0.86 of gestation), we assessed histopathological alterations in the brainstem cardiorespiratory control centres of the pons and medulla in early-onset FGR versus control fetal sheep. The FGR cohort were hypoxaemic and asymmetrically growth restricted. Compared to the controls, the brainstem of FGR fetuses exhibited signs of neuropathology, including elevated cell death and reduced cell proliferation, grey and white matter deficits, and evidence of oxidative stress and neuroinflammation. FGR brainstem pathology was predominantly observed in the medullary raphé nuclei, hypoglossal nucleus, nucleus ambiguous, solitary tract and nucleus of the solitary tract. The FGR groups showed imbalanced brainstem serotonin and serotonin 1A receptor abundance in the medullary raphé nuclei, despite evidence of increased serotonin staining within vascular regions of placentomes collected from FGR fetuses. Our findings demonstrate both early and adaptive brainstem neuropathology in response to placental insufficiency. KEY POINTS: Early-onset fetal growth restriction (FGR) was induced in fetal sheep, resulting in chronic fetal hypoxaemia. Growth-restricted fetuses exhibit persistent neuropathology in brainstem nuclei, characterised by disrupted cell proliferation and reduced neuronal cell number within critical centres responsible for the regulation of cardiovascular and respiratory functions. Elevated brainstem inflammation and oxidative stress suggest potential mechanisms contributing to the observed neuropathological changes. Both placental and brainstem levels of 5-HT were found to be impaired following FGR.

15.
Orthop J Sports Med ; 11(5): 23259671231165528, 2023 May.
Article En | MEDLINE | ID: mdl-37152550

Background: Patients with workers' compensation (WC) insurance claims are often shown to experience inferior patient-reported outcomes (PROs) after an orthopaedic surgical intervention compared with patients without WC claims. Purpose: To compare the postoperative PROs of patients with WC claims (WC patients) versus those without WC claims (non-WC patients) after proximal hamstring repair (PHR). Study Design: Cohort study; Level of evidence, 3. Methods: WC patients who underwent PHR between November 2011 and to September 2020 were propensity score matched at a 1:2 ratio to non-WC patients according to age, sex, and body mass index. Comorbidity data were collected as well as minimum 1-year postoperative PRO scores for the Lower Extremity Functional Scale (LEFS), the Hip Outcome Score (HOS), and the 12-Item Short From Health Survey (SF-12) Physical Component Summary (PCS) and Mental Component Summary (MCS). The type of work was characterized according to national WC insurance guidelines as light (maximum 20 lbs [9.1 kg]), medium (maximum 50 lbs [22.7 kg]), or heavy (≥50 lbs) [>/=22.7 kg]. Results: A total of 30 patients (10 WC and 20 non-WC) were included. The work type and baseline demographic characteristics of patients did not differ between groups. There were no significant between-group differences in postoperative PRO scores as measured by the LEFS (P = .488), HOS (P = .233), or SF-12 PCS (P = .521). However, the WC cohort showed inferior SF-12 MCS scores compared with the non-WC group (49.28 ± 9.97 vs 54.26 ± 9.69, respectively; P = .032). The WC status was also associated with an increased time needed for patients to return to full-duty work capacity (21 ± 9 vs 9 ± 8 weeks; P = .005). Conclusion: Our findings suggest that WC and non-WC patients who undergo PHR have comparable outcomes. Differences in SF-12 MCS scores and return to work time for full-duty capacity warrant further investigation.

16.
J Neuroinflammation ; 20(1): 124, 2023 May 24.
Article En | MEDLINE | ID: mdl-37226206

BACKGROUND: Antenatal infection/inflammation is associated with disturbances in neuronal connectivity, impaired cortical growth and poor neurodevelopmental outcomes. The pathophysiological substrate that underpins these changes is poorly understood. We tested the hypothesis that progressive inflammation in late gestation fetal sheep would alter cortical neuronal microstructure and neural function assessed using electroencephalogram band power analysis. METHODS: Fetal sheep (0.85 of gestation) were surgically instrumented for continuous electroencephalogram (EEG) recording and randomly assigned to repeated saline (control; n = 9) or LPS (0 h = 300 ng, 24 h = 600 ng, 48 h = 1200 ng; n = 8) infusions to induce inflammation. Sheep were euthanised 4 days after the first LPS infusion for assessment of inflammatory gene expression, histopathology and neuronal dendritic morphology in the somatosensory cortex. RESULTS: LPS infusions increased delta power between 8 and 50 h, with reduced beta power from 18 to 96 h (P < 0.05 vs. control). Basal dendritic length, numbers of dendritic terminals, dendritic arborisation and numbers of dendritic spines were reduced in LPS-exposed fetuses (P < 0.05 vs. control) within the somatosensory cortex. Numbers of microglia and interleukin (IL)-1ß immunoreactivity were increased in LPS-exposed fetuses compared with controls (P < 0.05). There were no differences in total numbers of cortical NeuN + neurons or cortical area between the groups. CONCLUSIONS: Exposure to antenatal infection/inflammation was associated with impaired dendritic arborisation, spine number and loss of high-frequency EEG activity, despite normal numbers of neurons, that may contribute to disturbed cortical development and connectivity.


Cerebral Cortex , Electroencephalography , Inflammation , Animals , Female , Pregnancy , Fetus , Inflammation/chemically induced , Lipopolysaccharides/toxicity , Microglia , Sheep , Dendrites , Cerebral Cortex/growth & development
17.
Int J Mol Sci ; 24(5)2023 Feb 22.
Article En | MEDLINE | ID: mdl-36901781

Perinatal brain injury is a major contributor to long-term adverse neurodevelopment. There is mounting preclinical evidence for use of umbilical cord blood (UCB)-derived cell therapy as potential treatment. To systematically review and analyse effects of UCB-derived cell therapy on brain outcomes in preclinical models of perinatal brain injury. MEDLINE and Embase databases were searched for relevant studies. Brain injury outcomes were extracted for meta-analysis to calculate standard mean difference (SMD) with 95% confidence interval (CI), using an inverse variance, random effects model. Outcomes were separated based on grey matter (GM) and white matter (WM) regions where applicable. Risk of bias was assessed using SYRCLE, and GRADE was used to summarise certainty of evidence. Fifty-five eligible studies were included (7 large, 48 small animal models). UCB-derived cell therapy significantly improved outcomes across multiple domains, including decreased infarct size (SMD 0.53; 95% CI (0.32, 0.74), p < 0.00001), apoptosis (WM, SMD 1.59; 95%CI (0.86, 2.32), p < 0.0001), astrogliosis (GM, SMD 0.56; 95% CI (0.12, 1.01), p = 0.01), microglial activation (WM, SMD 1.03; 95% CI (0.40, 1.66), p = 0.001), neuroinflammation (TNF-α, SMD 0.84; 95%CI (0.44, 1.25), p < 0.0001); as well as improved neuron number (SMD 0.86; 95% CI (0.39, 1.33), p = 0.0003), oligodendrocyte number (GM, SMD 3.35; 95 %CI (1.00, 5.69), p = 0.005) and motor function (cylinder test, SMD 0.49; 95 %CI (0.23, 0.76), p = 0.0003). Risk of bias was determined as serious, and overall certainty of evidence was low. UCB-derived cell therapy is an efficacious treatment in pre-clinical models of perinatal brain injury, however findings are limited by low certainty of evidence.


Brain Injuries , Fetal Blood , Animals , Pregnancy , Female , Brain
18.
Stem Cell Res Ther ; 14(1): 29, 2023 02 14.
Article En | MEDLINE | ID: mdl-36788590

BACKGROUND: Fetal growth restriction (FGR) is associated with deficits in the developing brain, including neurovascular unit (NVU) dysfunction. Endothelial colony forming cells (ECFC) can mediate improved vascular stability, and have demonstrated potential to enhance vascular development and protection. This investigation examined whether ECFCs from human umbilical cord blood (UCB) enhanced NVU development in FGR and appropriate for gestational age (AGA) fetal sheep. METHODS: Twin-bearing ewes had surgery performed at 88-90 days' gestation, inducing FGR in one fetus. At 113 days, ECFCs (1 × 107 cells) cultured from human UCB were administered intravenously to fetal sheep in utero. At 127 days, ewes and their fetuses were euthanised, fetal brains collected, and NVU components analysed by immunohistochemistry. RESULTS: Twenty-four fetal lambs, arranged in four groups: AGA (n = 7), FGR (n = 5), AGA + ECFC (n = 6), and FGR + ECFC (n = 6), were included in analyses. FGR resulted in lower body weight than AGA (P = 0.002) with higher brain/body weight ratio (P = 0.003). ECFC treatment was associated with increased vascular density throughout the brain in both AGA + ECFC and FGR + ECFC groups, as well as increased vascular-astrocyte coverage and VEGF expression in the cortex (P = 0.003, P = 0.0006, respectively) and in the subcortical white matter (P = 0.01, P = 0.0002, respectively) when compared with the untreated groups. CONCLUSIONS: ECFC administration enhanced development of NVU components in both the AGA and FGR fetal brain. Further investigation is required to assess how to optimise the enhanced angiogenic capabilities of ECFCs to provide a therapeutic strategy to protect the developing NVU against vulnerabilities associated with FGR.


Brain Injuries , Brain , Animals , Sheep , Female , Humans , Animals, Newborn , Fetus , Brain Injuries/metabolism , Fetal Growth Retardation/metabolism , Fetal Blood/metabolism , Body Weight
19.
Stem Cell Res Ther ; 14(1): 18, 2023 02 03.
Article En | MEDLINE | ID: mdl-36737828

BACKGROUND: Neural stem cells (NSCs) have the potential to engraft and replace damaged brain tissue, repairing the damaged neonatal brain that causes cerebral palsy (CP). There are procedures that could increase engraftment of NSCs and may be critical for efficacy, but hold notable risks. Before clinical trials progress, it is important to engage with the CP community to understand their opinions. The aim of this study was to determine the acceptability of NSC therapy for CP in the CP community. METHODS: Australian residents with CP and parents/carers of those with CP completed a questionnaire to determine their willingness to use NSCs from three sources (fetal, embryonic and induced pluripotent stem cells) and their willingness to undergo accompanying procedures (neurosurgery, immunosuppression) that carry potential risks. To further explore their views, participants also answered free text questions about their ethical concerns regarding the source of NSCs and their perceptions of meaningful outcomes following NSC treatment. RESULTS: In total, 232 responses were analyzed. Participants were willing to use NSCs from all three cell sources and were willing to undergo NSC therapy despite the need for neurosurgery and immunosuppression. Participants identified a range of outcome domains considered important following NSC treatment including gross motor function, quality of life, independence and cognitive function. CONCLUSIONS: Hypothetical NSC therapy was acceptable to the Australian CP community. This study has identified important findings from the CP community which can be used to inform future NSC research, including the design of clinical trials which may help to increase recruitment, compliance and participant satisfaction.


Cerebral Palsy , Neural Stem Cells , Infant, Newborn , Humans , Cerebral Palsy/therapy , Quality of Life , Cell Differentiation , Australia , Neural Stem Cells/transplantation , Surveys and Questionnaires
20.
Cytotherapy ; 25(5): 458-462, 2023 05.
Article En | MEDLINE | ID: mdl-36740465

BACKGROUND AIMS: Umbilical cord blood (UCB)-derived cells show strong promise as a treatment for neonatal brain injury in pre-clinical models and early-phase clinical trials. Feasibility of UCB collection and autologous administration is reported for term infants, but data are limited for preterm infants. Here the authors assessed the feasibility of UCB-derived cell collection for autologous use in extremely preterm infants born at less than 28 weeks, a population with a high incidence of brain injury and subsequent neurodisability. METHODS: In a prospective study at a tertiary hospital in Melbourne, Australia, UCB was collected from infants born at less than 28 weeks and processed to obtain total nucleated cells (TNCs), CD34+ cells, mononuclear cells and cell viability via fluorescence-activated cell sorting prior to cryopreservation. Feasibility was pre-defined as volume adequate for cryopreservation (>9 mL UCB collected) and >25 × 106 TNCs/kg retrieved. RESULTS: Thirty-eight infants (21 male, 17 female) were included in the study. Twenty-four (63.1%) were delivered via cesarean section, 30 (78.9%) received delayed cord clamping before collection and 11 (28.9%) were a multiple birth. Median (interquartile range [IQR]) gestational age was 26.0 weeks (24.5-27.5) and mean (standard deviation) birth weight was 761.5 g (221.5). Median (IQR) UCB volume collected was 19.1 mL/kg (10.5-23.5), median (IQR) TNC count was 105.2 × 106/kg (57.4-174.4), median (IQR) CD34+ cell count was 1.5 × 106/kg (0.6-2.1) and median (IQR) cell viability pre-cryopreservation was 95% (92.1-96.0). Feasibility of collection volume and cell count suitable for cell cryopreservation was achieved in 27 (71%) and 28 (73.6%) infants, respectively. CONCLUSIONS: UCB-derived cell collection adequate for cryopreservation and subsequent autologous reinfusion was achieved in 70% of extremely preterm infants. Extremely preterm UCB demonstrated a higher CD34+:TNC ratio compared with published full-term values. Recruitment to demonstrate safety of UCB cell administration in extremely premature infants is ongoing in the CORD-SAFE study (trial registration no. ACTRN12619001637134).


Fetal Blood , Infant, Extremely Premature , Humans , Infant, Newborn , Male , Pregnancy , Female , Infant , Cesarean Section , Prospective Studies , Feasibility Studies
...